Studies on the Organic Molecular Compounds. Part III. On the Molecular Compound-Formation of Aromatic Hydrocarbons with Nitro-Compounds and with Antimony Trihalides.

By Chiro SHINOMIYA.

(Received May 20, 1940.)

It has been shown by a number of investigators that many condensed or non-condensed aromatic ring compounds, such as naphthalene, phenanthrene, anthracene, durene, hexamethylbenzene, diphenyl, dibenzyl, tolane, etc., form addition compounds with nitro compounds and similar substances. The writer has discussed this matter in connexion with compound-formation and halochromism in previous papers.⁽¹⁾

- Binary Systems of Condensed Ring Substances. All the aromatic hydrocarbons mentioned here either have been proved or are considered to have the construction, as a whole, of a plane ring molecule, and may be seen to form similar binary phase diagrams with a nitro component. It may therefore be concluded that, in these binary systems, compound-formation is due to the affinity between the unsaturated carbon linkings and the nitro radicals. In the solid crystalline state, however, another condition may be necessary, namely, the formation of a crystal lattice of the addition compound, a condition that is disregarded in the liquid or gaseous state. Consequently, organic molecular compound-formation in the crystalline state is greatly affected by the structure of the component, particularly, the shape of the molecule. All the systems studied showed distinct halochromism when fused, pointing to the presence of molecular compounds in the liquid state, of which, however, only half the number gave crystalline compounds. The result is given in Table 1.
 - (1) The compound ratio was 1:1, except in the following cases: (2)
 - 3:1 phenanthrene—p-dinitrobenzene;
 - 2:1 naphthalene—styphnic acid, benzene—trinitrobenzene, benzene—picryl chloride;
 - 3:2 naphthalene—tetranitrobenzene, acenaphthene-picramide;
 - 2:3 pyrene—styphnic acid, fluorene—trinitrobenzene;
 - 1:2 fluorene—tetranitrobenzene;
 - 2:3 & 1:1 phenanthrene—tetranitrobenzene;
 - 1:1 & 1:2 pyrene—m-dinitrobenzene.
- (2) The order of compound-formation of nitro compounds with these hydrocarbons was almost the same as that was shown in the previous paper. (1)

⁽¹⁾ This Bulletin, 15 (1940), 92, 137.

⁽²⁾ As to the metastable compound, a more detailed report will be published at a not distant date.

Table' 1.

								`	
A: B(Melting point) Alterting point Black acress where the shade acress where the shade acres where the shade acres will be shade acres to the s	[50,0]	(150.0)	(lour)	(%)-83	C C C C C C C C C C C C C C C C C C C	(3.5)*	(6-91)	(217)	(ps)
Trinitrobenzene (123.0)	[12 [[152-5]*	: * p 0 .3	[:] [205.0]	1:1	1:1 (198)*	2:1(71)* or 1:1"	2:3 [105-0]*	() () () () () () () () () () () () () (1:1 (186)*
Picrie acid (1220)	(191-2)*]: [2 8]*	(183) ^x	(1603)*	1:1 (H5)*	1:1 B*	[36]*	וון טיי	i:ix U
Tetranitrobenzene (126.0)	3:2 (134.5)	[16 5. 5]	1:1 (134.6)	[:1 [110.5]	(213 (1294) 1 1 U (1:2)	-	1:2 [130.0]	1:1 (171-0)	111 U 7 Decembesed
Picramide (1883)	[11] [11]	[236.0] *	(121'2) [:]	3:2(97.9) or 1:1*	1:1"	: ×	1:1	1:1"	1:1 U
Trinitrocresol (1083)	(150-9) _x	1:1 [163.0]	1:1	: ()17,5)*	1:1 (113.()*	-	1:1 (107:2)*	Decemposed	ן:ו ט
Styphnic acid (1820)	2:1(144.0) or 1:1*	2:3(p19.0) er :	1:1()78.5) or (2:3)	1:1 (154)*	[1:1 [1:6]*	_	ונו ש"	er Isl"	٧
Trinitrotoluene (81.5)	[98]*	[164.5]	1:1 (133.0)	1:1 (105:1)*	(:1 (84)*	-	[:] [85]"	v *	v
Picryl chloride (83.0)	[1:1 [92]*	111 (154.6)	[:] [(20-0)]	111 (113-2)*	1:1 (88)*	2:1(39)* or : *	1:1 [64.6*	1:1 141-0"	v
2.4-Dinitrophenol (113.5)	1:1 (92-8)*	1:1 (146.3)	[92.0]	1:1 (86.0)*	٧*	_	V*	V*	٧
2,4-Dinitrotolyene (71.0)	1:1 (61)*	1:1 (92-5)	1:1 (75-5)	1:1(61)* or V*	۸,	v*	V*	∨ *	v
Trinitroanisol (68.0)	V or (1:1(54:0)	(12 ((104.5)	1:1 [75.0]	V	~	_	V	v	v
p-Dinitrobenzene (1733)	[119-0] ^N	1:1 U	٧	V*	3:1	∨ *	V *	v,	v
m-Dinitrobenzene (30.4)	1:1 (30.8)D*	(1:1(99/1) (1:2(99.3)	1:1 (77.0)	[: [72.3]*	v*	∨ *	v *	V*	~
o-Dinitrobensene [117.0]	V*	V	v	V*	v*	V*	V*	v *	v
2.6-Dinitrotolvene (65.0)	V*	V	٧	V*	V*	v *	~ *	V*	v
3.A.Dinitrotolucre (59.0)	v *	v	V	V*	∨×	v *	> *	V*	~
P-Nitrophenol [13.0]	∨*	v	v	V"	V .	_	~	`V*	v
m-Nitrophenol (36.5)	~	~	v	V*	v	-	.*	or isla	~
o-Nitrophenol (45.0)	V*	v	>	V*	٧.	-	v	v *	V

[×] The data from literature.

(3) The hydrocarbon sequence was usually naphthalene, pyrene, fluoranthene > acenaphthene > phenanthrene, benzene > fluorene > anthracene, chrycene.

Certain irregularity was found in the molecular compounds of tetranitrobenzene and styphnic acid.

- (4) Halochromic phenomenon was seen in the following order, pyrene, acenaphthene, anthracene > phenanthrene, fluorene > chrycene > fluoranthene > naphthalene > benzene.
- (5) It is interesting to note that the molecular compound of dissociation type and incongruent type in this Table, lay between the simple eutectic system and the lowest "melting point elevation" system of the congruent type.

A: B (Melting point) shows the value of the crystal from solution.

II. Binary Systems of Non-Condensed Ring Substances. The tendency to form molecular compounds of methyderivatives of benzene seemed to become very marked according as the increase of the number of substituents, while their compounds ratios were not simple, showing sometimes a phase diagram of "partially miscible type." In the case of certain compounds having two aromatic rings separated, as each of the separated ring can unite with one molecule of the nitro component, one molecule combine with two molecules of the nitro components. (3) Since in these cases, the shape of the component molecules greately affects the compound-formation, it is not possible to discuss the matter merely on the basis of the plane formula commonly used in the organic chemistry.

Table 2.

	Mesitylene	Prehnitene	Durene	Pentamethyl- benzene	Hexamethyl- benzene
Trinitro- benzene			2:1[101.0°]PM 1:1(U)*	3:2[121.0°]PM (1:1)	1:1 (175°)*
Picric acid	m : n*	1:1(U)*	∨[E:64.5°]	3:2[124.0°] PM or 1:1(131°)*	1:1(170°)*

	Dipḥenyl	p, p'-Ditoluyl	Dibenzyl	Stilbene	Tolane
Trinitro- benzene	1:1[U]*	1:1[D:91.0°]	.1:2 (102°)*	1 : 2* [121.5°]	1:2(96°)*
Picric acid	\ / *	∨[E:93.0°]	\ *	1:1[U:93.0°]	1:2(111°)*

	Diphenyl- methane	Triphenyl- methane	Diphenylamine	Azobenzene	p-Aminoazo- benzene
Trinitro- benzene		· PM	1 : 2 (100.0°)	1:2(132°)*	1:2[158]
Picric acid	\ *	PM*	1:2[U:70.0°] or 1:1[U]*	\ *	Decomposed

^{*} Data from literature.

III. Molecular Compounds of Antimony Trihalides. The relationships just described were found to hold true of the organic-inorganic molecular compounds of Menshutkin, (4) some of which, with the writer's

D: Dissociation type.

U: Incongruent type.

PM: Partially miscible type, the molecular compound of which separates two non-miscible liquids at melting point.

V: Simple eutectic type whose eutectic point is E.

⁽⁾ Melting points in parenthezes represent those of crystals obtained from solution.

⁽³⁾ J. J. Sudborough, J. Chem., Soc., 109 (1916), 1339.

⁽⁴⁾ B. Menshutkin, Chem. Zentr. 1910, II, 378; 1911. II. 751; 1912, I, 408; II, 1436; 1913, I, 804.

Table 3.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₅ OH H ₅ OCH ₃	SbCl ₃ 1:2(-25.3) {1:2(4.4) {1:1 U 1:1(19.9) 1:1(14.0) 1:1(1 .0) or ∨	1:1(0.5) 1:1(16.0) 1:1(1.5)
$\begin{bmatrix} J & & & & & & & & & & & & & & & & & & $	H ₅ OCH ₃ H ₅ OC ₂ H ₅ H ₅ COH H ₅ COCH ₃	{1:2 (4.4) 1:1 U 1:1 (19.9) 1:1 (14.0) 1:1 (1 .0)	1:1(0.5) 1:1(16.0) 1:1(1.5)
$\begin{bmatrix} J & C_6 \\ J & C_6 \end{bmatrix}$ $\begin{bmatrix} C_6 \\ C_6 \end{bmatrix}$ $\begin{bmatrix} C_6 \\ J \end{bmatrix}$ $\begin{bmatrix} C_6 \\ C_6 \end{bmatrix}$	H ₅ OC ₂ H ₅ H ₅ COH H ₅ COCH ₃	1:1 U 1:1 (19.9) 1:1 (14.0) 1:1 (1 .0)	1:1 (16.0) 1:1 (1.5)
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	H ₅ COH H ₅ COCH ₃	1:1(14.0) 1:1(1.0)	1:1(1.5)
[-17.5)] C ₆] [J C ₆] [0.4) C ₈]	H ₅ COCH ₃	1:1(1.0)	
0.4) C_6			1 . 1 / 10 /
1	H. CH. NO.		1:1 (-19.5
	1, 2	1:1 (2.5)	1:1 U
) 061	H ₅ CN	[1:1(-8.5)]	[1:1(-2.5]
\mathbf{C}_{6}	H₄·CH₃·Cl 1, 2	1:1 (-15.4)	\vee
		Viscous, glassy	\vee
-8.5)			\vee
			\vee
\mathbf{C}^{e}	H ₄ (NO ₂) ₂	∨ or [1:1 U]	V
C ₆	$\left\{ \begin{array}{ll} \mathbf{H}_{5}\mathbf{F}, \; \mathbf{C}_{6}\mathbf{H}_{5}\mathbf{Cl}, \\ \mathbf{H}_{5}\mathbf{Br} \end{array} \right\}$	1:1 U	V
Br ₃ C ₆	,H₅I	[1:1 U] or \lor	V
		[1:1 U]	V
Ce	H₄·CH₃·Cl 1,4,		
18.3)			
. "	,	V	V
-0			
. C ₆	5H5COCI,		
	General Control Contro	$\begin{array}{c} \text{J} & \text{C}_{6}\text{H}_{4}\cdot\text{CH}_{3}\cdot\text{Cl} \\ 1,2 \\ \text{C}_{6}\text{H}_{4}\cdot\text{CH}_{3}\cdot\text{NO}_{2} \\ 1,2 \\ \text{C}_{6}\text{H}_{5}\text{NO}_{2} \\ \text{C}_{6}\text{H}_{5}\text{NO}_{2} \\ \text{J} & \text{C}_{6}\text{H}_{4}\cdot\text{CH}_{3}\cdot\text{NO}_{2} \\ 1,4 \\ \text{C}_{6}\text{H}_{4}(\text{NO}_{2})_{2} \\ 1,3 \\ \text{C}_{6}\text{H}_{5}\text{F}, \text{C}_{6}\text{H}_{5}\text{Cl}, \\ \text{C}_{6}\text{H}_{5}\text{Br} \\ \text{C}_{6}\text{H}_{5}\text{I} \\ \text{C}_{6}\text{H}_{4}\cdot\text{CH}_{3}\cdot\text{Cl} \\ 1,3 \\ \text{C}_{6}\text{H}_{4}\cdot\text{CH}_{3}\cdot\text{Cl} \\ 1,3 \\ \text{C}_{6}\text{H}_{4}\cdot\text{CH}_{3}\cdot\text{Cl} \\ 1,4 \\ \text{C}_{6}\text{H}_{4}\text{Cl}_{2} \\ 1,4 \\ \text{C}_{6}\text{H}_{4}\text{Br}_{2} \\ 1,4 \\ \text{C}_{6}\text{H}_{5}\text{CO}_{2}\text{H}, \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*} In the writer's experiment pentamethylbenzene and durene gave superior compound-formation, their rare almost 85 and 31 in type 1:2. Methylation of the benzene nucleus seems to increase compound-formation, while that of the side chain reverses the result.

additional data, are given in Table 3. Like a nitro compound, antimony trichloride or tribromide gives a combination of a type similar to an aromatic ring. By an arrangement of the antimony trihalide molecular compounds in the order of "melting point elevation", compound-formation was clearly shown to be closely related to the configuration of the aromatic compound. These systems were proved from the diagram to have usually two sets of compounds. Of these two compounds the less stable one (ratio 1:2) was obtained only when the aromatic component exhibited a superior compound-formation. It was moreover found that antimony chloride was more strongly additive than the bromide, and that compound-formation of the benzene derivatives decreased when atoms of halogen or of negative groups having properties similar to the halogens were introduced into the benzene nucleus. Certain regularity was also found in Table 3, between compound-formation and the substitution of benzene nucleus.

Experimental.

I. Binary Systems of Pyrene and of Fluoranthene. Pyrene and fluoranthene exhibited compound-formations that closely resemble each other, the former slightly more marked than the latter. See Figs. 1, 2 for diagrams.

(1) Pyrene—2,4,6-trinitrobenzene.

Pyrene: 9.0 mg.							
Mol% pyrene	100.0	84.0	55.3	48.6	37 .3	26.0	17.2
Melting point	150.0	193.5	244.0	245.5	241.5	227.0	204.0
Thawing point	149.0	141.2	210.0	244.5	165.0	106.0	105.0
Pyrene: 20.0 mg.							
Mol% pyrene	95.5	87.5	77.8	67.9			
Melting point	148.0	166.0	209.3	235.5			
Thawing point	142.0	141.6	142.0	146.0			
Trinitrobenzene: 20.0 mg.							
Mol% trinitrobenzene	95.0	82.6					
Melting point	147.0	205.0					
Thawing point	116.0	116.0					
Eutectic point: 1415° 116 ()° (ma	tactable	. 105	5°) - 90	0 mole	% 20	mol%

Eutectic point: 141.5°, 116.0° (metastable: 105.5°); 90.0 mol%, 2.0 mol% pyrene.

Compound (1:1): reddish orange prisms, melting at 245.5°. Sublimable by heating.

ficultly sublimable. Light voluminous crystals were obtained from the

(2) Fluoranthene—2,4,6-trinitrobenzene.

alcoholic solution.

Trinitrobenzene: 9.8 mg.							
Mol% trinitrobenzene	73.8	58.1	46.9	30.1	16.1		
Melting point	188.5	203.0	204.0	_	124.5		
Thawing point	103.0	117.0	149.0	98.0	97.0		
Fluoranthene 4.3 mg.							
Mol% fluoranthene 100.0	95.1	71.7	62.4	51.1	28.6	17.2	10.7
Melting point 109.5	106.0 `	183.0	200.0	204.5	188.3	164.5	139.8
Thawing point 108.5	98.0	99.0	99.0	202.0	103.0	103.0	103.0
Eutectic point: 98.5°, 103.0°;	86.8 n	nol%, 4	.0 mol	% fluor	anthen	e.	
Compound (1:1): bright yelle							\mathbf{Dif} -

Pyrene and fluoranthene gave the most stable compounds with trinitrobenbene. When fused they scarcely dissociated; by further heating, the molecular compounds sublimed without decomposing.

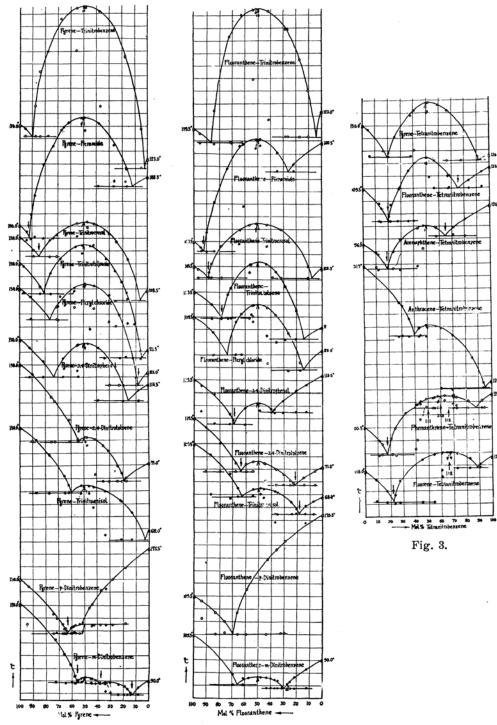


Fig. 1.

Fig. 2.

(3) Pyrene—picramide.					
Pyrene: 9.4 mg.					
Mol% pyrene 94.7 88.2		52.0 50.3	38.6	26.9	16.6
Melting point		35.5 236.0	231.0	$213.5 \\ 180.5$	$195.5 \\ 180.5$
Thawing point	139.5 23	31.0 225.0	181.0	180.5	180.5
Pyrene: 17.0 mg.	01.4	70.0 .00.0			
Mol% pyrene 91.5 Melting point 169.0		73.8 62.3 13.0 232.3			
Thawing point		39.0 —			
Eutectic point: 139.5°, 180.5°; 92			icramid		
Compound (1:1): brown prisms or	plates, mel	ting at 236 .	0°. Sta	ible, dif	ficult-
ly sublimable.		C			
(4) Fluoranthene—picramide.					
Picramide: 8.2 mg.					
Mol% picramide 77.7	51.5	38.4 26.2	15.8		
Melting point		37.5 168.0	141.0		
Thawing point 166.0	186.0 18	38.0 —	102.0		
Total fluoranthene: 12.6 mg.					
Mol% fluoranthene 90.1	94.7	64.8 51.8	35.2		
Melting point 117.5	105.0 18	86.0 191.0	180.5		
Thawing point		07.0 184.0	166.0		
Eutectic point: 102.0°, 166.0°; 92. Compound (1:1): fine brownish y	8 mol%, 26	.7 mol% flu	oranthe molti	ene. ng at 1	01 50
Stable, difficultly sublimable.	enow needi	es or powde	i, meiti	ng at i	. 31.0
(5) Pyrene—trinitrocresol.					
Trinitrocresol: 5.6 mg. Mol% trinitrocresol 69.9	57.8	14.9 29.0			
Mol% trinitrocresol 69.9 Melting point 153.5		31.0 152.0			
Thawing point		51.0 135.0			
Pyrene: 7.3 mg.					
Mol% pyrene 89.1	1 76.5 4	7.1 24.6	15.3		
Melting point 140.0	148.0 16	63.0 147.0	132.5		
Thawing point 135.0	→ 134.5 15	58.0 100.0	102.0		
Eutectic point: 135.0°, 101.0°; 84.	8 mol % 7	, ,	(82.0)		
Compound (1:1): reddish brown					
(6) Fluoranthene—trinitrocresol.		4.5			
Trinitrocresol 11.8 mg. Mol% trinitrocresol 89.6	67.7	48.3 36.4			
Melting point		14.0 139.0			
Thawing point 101.0		40.0 —			
Fluoranthene: 19.6 mg.					
Mol% fluoranthene 96.2		86.2 78.6	56.8	43.1	38.9
Melting point 107.8	3 105.0 1	12.0 126.5	143.0	143.0	
Thawing point		01.0 101.0	105.0	126.0	1018
Eutectic point: 110.0°, 110.0°; 89. Compound (1:1) yellow needles, m	0 mol%, 8.2	2 mol% fluo	ranthen	e.	
Trinitrocresol gave the widest existence					
	range (w)	, .			
(7) Pyrene—2,4,6-trinitrotoluene.					
Pyrene: 9.1 mg.		Ee 0 - F1 0	45.0	99 0	01.0
Mol% pyrene 97.1 84.4 76 Melting point 148.0 132.0 142.		56.9 51.8 63.5 164.5	$45.0 \\ 163.0$	$33.0 \\ 153.5$	$21.0 \\ 135.5$
Thawing point 127.0 126.0 126.1		28.0 158.0	98.0	75.0	75.0

Trinitrotoluene: 30.0 mg.						
Mol% trinitrotoluene 94.	4 89.0	83.5	74.1			
Melting point 81.		127.0	144.0			
Thawing point 74.		76.0				
Eutectic point: 126.0°, 75.0°; 81.2	mol%, 4	l.8 mol	% trin	itrotolue	ne.	
Compound (1:1): orange plates	or prisms	s, melti	ng at	164.5°.		
(8) Fluoranthene-2,4,6-trinitrotoluene.						
		,				
Trinitrotoluene 5.7 mg.	0 449	90 5				
Mol% trinitrotoluene 63.		$28.5 \\ 113.0$				
Melting point		89.0				
	32.0	03.0				
Fluoranthene: 11.5 mg.					20.2	20.0
Mol% fluoranthene 86	78.8	73.7	56.4		29.2	20.8
Melting point 100	.2 90.0	107.0	132.0		114.0	95.0
Thawing point 88		88.6	89.0		72.0	72.8
Eutectic point: 89.0°, 72.5°; 78.8						
Compound (1:1): fine yellow need	dles or po	owder,	melting	g at 133.	.0°.	
(9) Pyrene—picryl chloride.						
Picryl chloride: 9.1 mg.						
Mol picryl chloride 70.6	57.0	42.6	30.1			
Melting point		150.0	136.0			
Thawing point		135.0	125.0			
Pyrene: 4.9 mg.						
	719	40.1	22.4	97.		
Mol% pyrene 91.0 Melting point 143.3		$49.1 \\ 153.5$	128.5			
0 1		153.5 152.5	73.0	,		
Thawing point						
Compound (1:1): brownish red p					54.00	
,	orisins or	powde	i, men	ing at 1	.04.0	
(10) Fluoranthene—picryl chloride.						
Picryl chloride: 9.1 mg.			-			
Mol% picryl chlroide 82.	63.6	46.0	33.0			
Melting point 73.5	5 111.0	119.0	106.0			
Thawing point 67.0) —	110.0	80.0			
Fluoranthene: 8.1 mg.						
Mol% flouoranthene 84.6	62.5	53.6	42.6	26.1		
Melting point 98.0	112.0	119.0	117.0	97.0		
Thawing ponit 80.0	80.0	106.0	73.0	67.0		
Eutectic point: 80.0°, 67.0°; 73.8	mol%, 18	5.6 mol	% fluo	ranthen	e.	
Compound (1:1): orange yellow						
(11) Pyrene—2,4-dinitrophenol.						
Total dinitrophenol: 11.1 mg.						
Mol% dinitrophenol 80.	5 92.4	61.0	50.6	44.8	33.5	
Melting point	1090					
Thawing point		101.5	143.0		120.0	
Pyrene: 8.0 mg.	101.0	101.0	140.0	120.0	120.0	
	000		45.0			
Mol% pyrene 92.3 Melting point 143.0		54.4	47.0			
		$146.0 \\ 120.0$	146.0			
Thawing point				mone		
					16 90	
Compound (1:1): reddish orange	prisms o	r plate	s, men	ing at 1	40.5	
(12) Fluoranthene—2,4-dinitrophenol.						
Fluoranthene: 16.6 mg.						
Mol% fluoranthene 94						
Melting point 105		60.5	49.5	37.8		
C) A	.0 83.0	88.0	91.0	87.0		
Thawing point	.0 83.0	88.0	91.0			

Dinitrophenol: 8.4 mg.	-00 00 5			27.0	
Mol% dinitrophenol 87.4	79.0 69.5		$\begin{array}{c c} .1 & 30.3 \\ .0 & 78.2 \end{array}$	$27.6 \\ -83.0$	$15.5 \\ 99.0$
Melting point 106.0 Thawing point 850.	101.8 94.0 84.5 84.0	87.5 92 84.5 90	$.0 \mid 18.2 \\ .5 \mid 75.0$	75.0	75.5
Eutectic point: 75.0°, 85.0°; 68.8 r				10.0	.0.0
Compound (1:1): yellow prisms,			monene.		
(13) Pyrene—2,4-dinitrotoluene.	8				
Pyrene: 5.2 mg.					
Mol% pyrene 90.2	75.8 61.8	49.4 31	.1 21.2		
Melting point 142.5	124.5 106.5				
Thawing point 90.0	89.0 89.0	89.0 57	.5 57.5		
Dinitrotoluene: 7.2 mg. Mol% dinitrotoluene	0 55.1 48.1	41.7 95	.9 24.2	17.7	
Mol% dinitrotoluene 73.0 Melting point 121.0		41.7 35 90.3 85		60.5	
Thawing point	0 89.0 86.0	63.0 57		57.5	
Eutectic point: 89.0°, 57.5°; 54.4		nol% pyre	ne.		
Compound (1:1): yellow prisms,	melting at 92	.5°.			
(14) Fluoranthene—2,4-dinitrotoluene.					
Fluoranthene: 14.8 mg.		7 40 44		25.0	
Mol% fluoranthene 91.0 Melting point 102.5		54.8 44 75.5 73		$25.3 \\ 61.0$	
Thawing point				57.0	
Dinitrotoluene: 15.5 mg.		0010 00		.0	
Mol% dinitrotoluene 94.1	1 85.3 77.0	69.5 - 54	.3 + 22.1		
Melting point 68.0			.5 74.5		
Thawing point			.0 \ 68.0		
Eutectic point: 68.0°, 57.0°; 64.0 n Compound (1:1): light yellow pow	noi%, 22.4 me vder melting	91% nuora:	ntnene.		
(15) Pyrene—2,4,6-trinitroanisol.	der, merung				
Trinitroanisol: 7.0 mg.					
Mol% trinitroanisol 79.6		.2 34.6	22.2		
Melting point 92.0			128.0		
Thawing point	65.0 98	.0 98.0	98.0		
Pyrene: 5:8 mg. Mol% pyrene	62.4 52	.9 43.1	21.8	13.3	
Melting point			92.5	83.0	
Thawing point 99.0				60.5	
Eutectic point: 98.5, 60.5; 60.5 mg					
Compound (1:1): yellowish orang	ge prisms or	plates, mel	ting at 1	104.5.°	
(16) Fluoranthene—2,4,6-trinitroanisol.					
Total fluoranthene: 11.0 mg. Mol% fluoranthene	3 72.0 46.3	66.2 54	c 252	045	
Melting point		66.2 54 $75.0 74$		$\frac{24.5}{64.5}$	
Thawing point 70.0		68.0 69		54.5	
Trinitroanisol: 26.3 mg.					
		20 7 71	9		
	$86.5 \mid 79.2$				
Melting point 65.0	0 61.5 59.0	72.8 75.			
Melting point 65.0 Thawing point 55.0	$\begin{vmatrix} 61.5 \\ (47.5) \end{vmatrix}$ 59.0	72.8 75.	.0		
Thawing point 55.0	$ \begin{array}{c c} 0 & 61.5 \\ & (47.5) \\ 0 & 55.0 \\ \end{array} \begin{array}{c c} 59.0 \\ 55.5 \end{array} $	72.8 75. 55.0 70. (48.0)	.0		
Thawing point	0 61.5 59.0 (47.5) 55.0 55.5 mol%, 18.5 m	72.8 75. 55.0 70. (48.0) nol% fluors	.0 .0 anthene.	or at 5	75.0°.
Thawing point 55.0	$\begin{array}{c c} 0 & 61.5 \\ (47.5) & 55.0 \end{array}$ $\begin{array}{c c} 59.0 \\ 55.5 \end{array}$ $\begin{array}{c c} 59.0 \\ 55.5 \end{array}$ mol%, 18.5 m afy or powde	72.8 75. 55.0 70. (48.0) nol% fluors ery crystal	.0 .0 anthene. s, meltin		
Thawing point	$\begin{array}{c c} 0 & 61.5 \\ (47.5) & 55.0 \end{array}$ $\begin{array}{c c} 59.0 \\ 55.5 \end{array}$ $\begin{array}{c c} 59.0 \\ 55.5 \end{array}$ mol%, 18.5 m afy or powde	72.8 75. 55.0 70. (48.0) nol% fluors ery crystal	.0 .0 anthene. s, meltin		
Thawing point	$\begin{array}{c c} 0 & 61.5 \\ (47.5) & 55.0 \end{array}$ $\begin{array}{c c} 59.0 \\ 55.5 \end{array}$ $\begin{array}{c c} 59.0 \\ 55.5 \end{array}$ mol%, 18.5 m afy or powde	72.8 75. 55.0 70. (48.0) nol% fluors ery crystal	.0 .0 anthene. s, meltin		
Thawing point	0 61.5 59.0 (47.5) 55.0 55.0 55.5 mol%, 18.5 mafy or powdeculty from th	72.8 75. 55.0 70. (48.0) nol% fluors rry crystal e fused liq	.0 .0 anthene. s, meltin uid witho	out see	ding.
Thawing point	0 61.5 59.0 (47.5) 55.0 \(\) 0 55.0 \(\) 0 55.0 \(\) 0 55.5 mol%, 18.5 mafy or powdeculty from th	72.8 75. 55.0 70 (48.0) 101% fluors 10 fluors 11 fluore 12 fluore 13 fluore 14 fluore 15 fluore 15 fluore 16 fluore 16 fluore 17 fluore 18 fluore	.0 .0 anthene. s, meltinuid withe	out see	ding. 66.8
Thawing point	0 61.5 59.0 (47.5) 55.0 \(\) 55.0 \(\) 55.5 mol%, 18.5 mafy or powder culty from th	72.8 75.0 70 (48.0) 601% fluors cry crystal e fused liques 58.7 60.5 113.0 112.0	anthene. s, meltinuid withe	65.1 111.3	66.8 115.0

Dinitrobenzene: 4.0 mg							
Mol% dinitrobenbene	81.8	71.5	66.6	57.8	5		
Melting point 18		149.5	142.0	-	_		
Thawing point 1	15.5	114.5	114.0	114.0	0		
Dinitrobenzene: 3.0 mg.							
	62.2	55.4	48.4	41.9	9 28.4		
Melting point 14		130.0	116.0	113.	5 129.0		
Thawing point		113.0	109.0	108.0	0 108.5		
Eutectic point: 107.5°, 63.7 mo							
Pertectic point: 114.5°, 52.0 mg							
Compound (1:1): bright red n				onoru	ent meltin	g point	
	iccurcs	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	an m	ongru	circ increis	s point	
(18) Fluoranthene—p-dinitrobenzene.							
Fluoranthene: 9.6 mg.							
	94.4	83.4	59.4	43.5	2		
Melting point		97.0	115.0				
	92.3	80.0	80.0				
Total fluoranthene: 12.5 mg.	02.0		00.0	001			
	ce n	76.9	32.6	29.	4		
2.201,0 2.401	66.7		32.0	153.0			
E P	97.0	90.0		80.8			
- Indiana Property	80.0	81.5	80.5	00.0	9		
Eutectic point: 80.0°, 70.1 mol	% fluo	ranth	ene.				
The solubility of p-dinitrobenzene in	fluora	anther	ne was	rathe	r small.		
(19) Pyrene—m-dinitrobenzene.							
Total dinitrobenzene: 13.9 mg.				•			
9	09.1	76.2	66.5	62.1	58.6 56.3	55.4	49.9
					90.5 91.5		92.5
Melting point		$87.0 \\ 79.0$	89.3 88.0		88.0 88.0		92.0
Thawing point 79.0 79.0 ↓	79.0		(82.0)	00.0	00.0	90.0	91.0
		,	(82.0)	47.6	44.9 43.0	39.1	27.7
						103.0	
					89.0 \$88.0		89.0
Pyrene: 7.7 mg.				00.0	00.0	00.0	00.0
Mol% pyrene	65.9	57.1	50.4	29.8	21.0		
Melting point 1	11.0	94.0	92.8		86.5		
Thawing point		88.0	88.5		79.0		
Eutectic point: 89.0°, 88.0°, 79.						ole nu	rono
Compound (1:1): orange yello						or /e py	rene.
Compound (1:1): bright yello							
	w pow	vuer,	mercing	, at or			
(20) Fluoranthene—m-dinitrobenzene.							
Fluoranthene: 8.4 mg.							
Mol% fluoranthene 57.0	47.8	39.9	34.5	26.0			
Melting point 76.0	76.5	76.0	74.0	69.0			
Thawing point 68.5	-	68.0	68.0	67.0			
Total dinitrobenzene: 22.6 mg.							
	63.3	75.2	73.0	69.0	56.8 50.2	38.5	30.7
	74.8	73.0	71.5	69.0	76.5 77.0		79.5
		67.5	66.8		68.0 74.0		71.0
Eutectic point: 71.0°, 68.0; 56.0						11.0	. 11.0
Compound (1:1): light yellow							
Compound (1:1); fight yellow	powe	ier, m	eiung	at 77.	0.		
II. Binary System of 1,2,4,6-Tetrans	itrober	nzene.	1,2,4,	6-Tetr	anitrobenz	ene sh	owed

II. Binary System of 1,2,4,6-Tetranitrobenzene. 1,2,4,6-Tetranitrobenzene showed somewhat irregular compound-formation with the hydrocarbons.

Systems of compound ratio 1:1:--

pyrene, fluoranthene, acenaphthene, anthracene (and chrycene).

Systems of compound ratio other than 1:1:-

naphthalene, phenanthrene, and fluorene.

The molecular compounds of the latter type seem to dissociate considerably on melting, giving a flat liquidus near the dystectic point in the diagram, Fig. 3.

(21) Pyrene—1,2,4,6-tetranitrobenzene.
Tetranitrobenezene: 9.7 mg.
Mol% tetranitrobenzene 90.4 66.1 50.3 40.6 25.1 16.2 Melting point 125.0 162.0 168.0 162.0 141.0 130.0 Thawing point 122.0 122.0 160.0 130.0 — — Pyrene: 7.9 mg.
Mol% pyrene 95.8 79.5 62.0 49.0 40.6 22.3 Melting point 147.0 127.0 158.0 168.0 166.5 — Thawing point 126.0 125.5 125.5 161.0 — 122.0 Eutectic point: 125.0°, 122.0°; 81.0 mol%, 8.5 mol% pyrene. Compound (1:1): dark red powder, melting at 168.5.° Stable.
(22) Fluoranthene—1,2,4,6-tetranitrobenzene.
Tetranitrobenezene: 11.0 mg. Mol% tetranitrobenzene 83.6 68.0 52.2 36.0 20.2 12.7 Melting point 116.0 120.0 132.0 124.0 88.0 98.0 Thawing point 110.0 110.0 119.0 84.0 84.0 84.0
Tetranitrobenzene: 6.4 mg.
Mol% tetranitrobenzene
(23) Acenaphthene—1,2,4,6-tetranitrobenzene.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tetranitrobenzene: 3.4 mg. Mol% tetranitrobenzene
Compound (1:1): reddish brown prisms, melting at 110.5°.
(24) Anthracene—1,2,4,6-Tetranitrobenzene.
Tetranitrobenzene: 8.5 mg. Mol% tetranitrobenzene 93.5 84.2 69.3 48.7 43.0 35.4 27.1 Melting point 125.0 145.0 163.0 171.0 168.5 176.0 189.0 Thawing point 121.0 119.0 162.0 162.0 162.0 162.0 Tetranitrobenzene: 5.5 mg.
Mol% tetranitrobenzene 60.4 44.7 30.1 Melting point 169.0 186.0 Thawing point 120.5 163.0 163.0 Eutectic point: 163.0°, 120.5; 60.5 mol%, 5.8 mol% anthracene. Compound (1:1): deep red prisms or needles, melting at 171.0
(25) Phenanthrene—1,2,4,6-tetranitrobenzene.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tetranitrobenzene: 5.3 mg. Mol% tetranitrobenzene 69.6 57.5 48.5 Melting point 123.5 124.5 122.5 120.5(125.5)(118.5)Thawing point 115.0 120.0 116.0 106.0 (118.0) (115.0)Eutectic point: 79.0°, 115.0°; 82.2 mol%, 12.0 mol%, phenanthrene. Pertectic point: 115.0°, 61.5 mol% phenanthrene. Compound (2:3): orange red needles, melting at 125.0°.
Compound (1:1): reddish orange needles with an incongruent melting point. Under certain conditions of heating, the thawing and melting points were not uniform, another metastable combination (1:2) can thus be expected. (26) Fluorene—1,2,4,6-tetranitrobenzene. Total fluorene: 9.1 mg. Mol% fluorene 100.0 76.955.039.4 35.1 27.5 45.7

97.0 124.5129.0 130.0 129.0128.3Thawing point 115.0 90.091.0111.0125.591.0 Tetranitrobenzene 8.7 mg. Mol% tetranitrobenzeene 90.3 82.467.4 60.2 27.2 17.0 8.6 125.0 .130.0 129.5108.0 100.2190.0 $91.0 \downarrow 91.0$ 92.0

Eutectic point: 91.0°, 117.5°; 78.0 mol%, 12.0 mol% fluorene. Compound (1:2): orange red prisms or needles, melting at 130.0°.

Summary.

As in the case of the nitro components discussed in Parts I and II, on the formation of crystalline molecular compounds, regularity was found also in the aromatic hydrocarbon components of condensed or non-condensed ring structure. The predominant tendency to compound-formation seems to be affected by the structure of both components, although it differs considerably from that in solutions. All the observed systems were almost halochromic when fused, about half the number of which gave crystalline compounds, some of which are shown in the phase diagrams. The effect of substituents of benzene ring in the binary systems containing antimony trihalides was also studied.

The writer wishes to express his sincere thanks to Prof. B. Kubota and to Prof. Y. Shibata of the Tokyo Imperial University for their kind guidance and encouragement throughout this study and to Dr. T. Asahina for much valuable advice. Thanks are also due to the Hattori-Hôkôkai for the grant, with the aid of which the expenses of the study were defrayed.

Chemical Institute, Faculity of Science, Imperial University of Tokyo and Kumamoto Higher Technical School.